o-hydroxyacetophenone and benzaldehyde in alkaline medium.

This new procedure affords a convenient route to the 3-substituted chromanones and it has been experimented successfully on some o-hydroxyarylalkylketones, such as o-hydroxypropiophenone, quoted above, and its 5-bromo and 5-methyl derivatives, o-hydroxybutyrophenone and the o-hydroxyphenylbenzylketone.

In the case of o-hydroxyacetophenone, we have obtained only a polymeric material and, with the o-hydroxyiso-butyrophenone, the 5-hydroxymethyl derivative. Evidently the presence or the absence of a substituent on the active methylene group is sufficient to orient the reaction in another direction.

P. DA RE and L. VERLICCHI

Research Department of Recordati-Laboratorio Farmacologico S. p. A., Milano (Italy), April 21, 1960.

Riassunto

Viene descritta una semplice sintesi di cromanoni 3sostituiti, da o-idrossiarilalchilchetoni e formaldeide in ambiente alcalino.

Alkaloids of Apocynaceae V Hunterine, a New Alkaloid from *Hunteria eburnea* Pichon¹

Recently, Bartlett, Taylor, and Raymond-Hamet have described four new alkaloids from the bark of *Hunteria eburnea* Pichon² and have shown that they represent a new class of indole alkaloids³. We wish to report the isolation and characterization of another new alkaloid, hunterine, from the root bark of *Hunteria eburnea* Pichon⁴.

A careful chromatography of the alkaloidal fraction on deactivated alumina using benzene-chloroform mixtures (1:3) and chloroform as eluents yielded the crude base. Crystallization from methanol or methanol-chloroform mixture afforded hunterine in colorless plates, m. p. $264-265^{\circ}\text{C}$ (dec. uncorr.), $[\alpha]_{D}^{27} = -205\cdot1$ (CHCl₃, C = 1).

Calc. for $C_{42}H_{52}O_4N_4$: C, 74·52; H, 7·74; O, 9·46; N, 8·28; OCH₃ (1), 4·59; N(CH₃) (1), 2·22. Found: C, 74·60; H, 7·49; O, 9·38; N, 8·57; OCH₃, 4·96; N(CH₃), 2·40

The hydrochloride was prepared in the conventional manner and recrystallized from acetone, m. p. $> 270^{\circ}$ C (dec.).

Calc. for $C_{42}H_{52}O_4N_4\cdot 2$ HCl: C, 67·27; H, 7·26; Cl, 9·46; OCH₃ (1), 4·11. Found: C, 67·01; H, 7·49; Cl, 9·60; OCH₃, 4·18.

Electrometric titration of hunterine in 66% aqueous dimethyl formamide indicates the molecular weight of 685 \pm 25 (Calc. for $C_{42}H_{52}O_4N_4$: 678·8) with two basic groups, $\rho K'_a$ 7·0 and 7·4 as well as one acidic group, $\rho K'_a$ 12·6. The ultraviolet spectrum is characterized by the following bands: $\lambda^{\rm EtOH}_{\rm max}$ 228 m μ , a_M = 38,500; 293 m μ , a_M = 11,300, and 250 m μ , a_M = 9,500 (shoulder).

The band at 293 m μ shifts to a broader band at 305 m μ in the alkaline solution (phenolic group, pK'_a 12.6, vide supra). This spectrum is tentatively interpreted as resulting from the additive effect of dihydroindole and 5-hydroxyindole chromophores.

The infrared spectrum of hunterine in chloroform solution shows a band at 5.75 μ , $a_{\rm M}=375$ (M. W. 685) and indicates the presence of one unconjugated ester per molecule 5. The band envelope with maxima at 6.16 and 6.20 μ is also consistent both in wave length and intensity with the presence of 5-hydroxyindole and dihydroindole moieties as was shown by comparison with the spectra of appropriate models 6. While the band of free indole NH is missing at 2.90 μ , there is a band at 2.77 μ and an intense underlying absorption from 2.9 to 4.5 μ indicative of free and hydrogen bonded hydroxyl.

These as yet preliminary data suggest that hunterine represents another example of dimeric indole-indoline alkaloids?. Hunterine was shown to exhibit hypotension of short duration in anesthetized animals at 1 mg/kg⁸.

Acknowledgment. The authors are grateful to Dr. H. E. Boaz for the infrared data, Mr. L. G. Howard for the ultraviolet data, Messrs. W. L. Brown, R. Hughes, H. L. Hunter, and G. M. Maciak for microanalyses, and Dr. F. G. Henderson for pharmacological testing.

N. Neuss and Nancy J. Cone

Lilly Research Laboratories, Indianapolis (Indiana), December 11, 1959.

Zusammentassung

Hunterin wird als ein neues Alkaloid aus der Wurzelrinde von *Hunteria eburnea* Pichon beschrieben. Die analytischen und physikalischen Eigenschaften dieser Verbindung weisen darauf hin, dass Hunterin ein dimeres Alkaloid vom Indol-Indolin-Typus darstellt.

- Paper IV in this series see Exper. 15, 414 (1959).
- ² Another *Hunteria* species, *H. corymbosa* Roxb. was investigated by M. Greshoff and a crystalline alkaloid isolated; however, no data on the compound were given. Ber. deutsch. chem. Ges. 23, 3537 (1890).
- ³ F. Bartlett, W. I. Taylor, and Raymond-Hamet, C. R. Acad, Sci., Paris 249, 1259 (1959). The appearance of this work has prompted the presentation of this preliminary communication. The physical properties and formulae of these alkaloids are in good agreement with the data obtained on alkaloids isolated in our laboratories and tentatively named huntericine, hunteridine, and hunteriline. Therefore, we assume that these compounds are identical with churnamonine, isoeburnamine, and eburnamine respectively, and refrain from repeating our analytical and physical data as well as from the usage of our names for these alkaloids. We should like to thank Dr. Taylor for calling his work to our attention.
- ⁴ Commercial sample from S. B. Penick & Co., New York, N. Y., U.S.A.
- ⁵ For comparison, see the spectrum of sarpagine and ajmaline in N. Neuss, *Physical Data of Indole and Dihydroindole Alkaloids* (Lilly Research Laboratories, Indianapolis, Indiana, July 1959).
- Research Laboratories, Indianapolis, Indiana, July 1959).

 ⁶ The model substances were: bufotenine, $\lambda_{\max}^{\text{CHCl}_3}$ 6·15 and 6·30 μ , and ajmaline, $\lambda_{\max}^{\text{CHCl}_3}$ 6·23 μ . The spectra were recorded on a Beckman, Model IR 7, Infrared Spectrophotometer using a 2·0 mm cell
- cell. 7 M. Gorman, N. Neuss, and G. H. Svoboda, J. Amer. chem. Soc. $\it 81.4745$ (1959).
- ⁸ Hypotensive effects of extracts of *Hunteria eburnea* were first reported by RAYMOND-HAMET, C. R. Acad. Sci., Paris 240, 1470 (1955) and subsequently by Engelhard and Gelbrecht, Naturwissenschaften 45, 547 (1958).